

Compelling open and quantifiable questions that require next generation of RHIC:

register at:

http://www.bnl.gov/rhic_ags/users_meeting

organizing committee:

Peter Steinberg pas@bnl.gov Helen Caines helen.caines@yale.edu Steve Vigdor vigdor@bnl.aov

From particles to fields in QCD

conference coordinator: Kelly Guiffreda guiffreda@bnl.gov or 631-344-5654

D. Kharzeev

June 20-24, 2011

The 2011 RHIC/AGS Users' Meeting
The RHIC/eRHIC Long Range Plan
Brookhaven National Laboratory

Disclaimer:

not a systematic representation of the current/future RHIC program, but a personal and biased view of a theorist

will not talk about pp program and spin - heavy ions only

Understanding QCD

QCD = quark model + gauge invariance

(FIELDS = GEOMETRY)

$$\mathcal{L} = -\frac{1}{4}G^a_{\mu\nu}G^a_{\mu\nu} + \sum_f \bar{q}_f^a (i\gamma_\mu D_\mu - m_f)q_f^a;$$

$$D_\mu = \partial_\mu - igA^a_\mu t^a$$

Elegant, consistent, correct, but not understood theory

Asymptotic Freedom: particles of QCD revealed

At short distances, the strong force becomes weak (anti-screening) one can access the "asymptotically free" regime in hard processes

and in super-dense matter (inter-particle distances ~ 1/T)

$$\alpha_s(Q) \simeq \frac{4\pi}{b \ln(Q^2/\Lambda^2)}$$

But: Strong confining interaction at large distances - must understand dynamics of fields!

From particles to fields in QCD

Particles

Fields (Geometry)

From particles to fields: collective phenomena as the essence of QCD

• From partons to strong color fields: nuclear wave functions at small x

4-7 \otimes 0.5-0.75 GeV/c - b₀(pp) = 0.084 b₀(dA 60-88) = 0.134 b₀(dA 0-20) = 0.180

V 2

0.05

• FOPI (Z=1 particles)

• E895 (protons)
• E897 (protons)
• E897 (protons)
• E897 (protons)
• NA49 (v2(2) π)
• CERES (EP h²)
• STAR (EP{BBC's}h²)
• STAR (v2{4}h² GF-Cumulants)
• STAR (v2{4}h² Q-Cumulants)
• ALICE (v2{4}h² Q-Cumulants)

 Hydrodynamics and collective behavior: transport properties; phase diagram &

fluctuations; anomalies and chiral magnetic effect

• Jets: the flow of energy and momentum in QCD

• The probes: heavy quarks, dileptons, ...

From partons to fields at small x

Bjorken x : the fraction of hadron's momentum carried by a parton; high energies s open access to small $x = Q^2/s$

Large x $\begin{array}{c}
\text{fast (p>>q_z)} \\
\text{hadron}
\end{array}$

the boundary of non-linear regime: partons of size 1/Q > 1/Q_s overlap

Color Glass Condensate small x

Because the probability to emit an extra gluon is $\sim \alpha_s \ln(1/x) \sim 1$, the number of gluons at small x grows; the transverse area is limited

transverse density becomes large

The origin of classical background field

Coherent field with occupation number $\sim \frac{1}{\alpha_s(Q_s)}$ suppression of hard processes at small x; depletion of back-to-back (quantum) correlations

Gluons with large rapidity and large occupation number act as a background field for the production of slower gluons

Color Glass Condensate

Probes of coherent gluon fields at small x

Probes of coherent gluon fields at small x: long-range correlations in rapidity

causality:

$$\tau_{\rm init.} = \tau_{\rm f.o.} \exp\left(-\frac{1}{2}\Delta y\right)$$

A.Dumitru, K. Dusling, F. Gelis,

J. Jalilian-Marian, T. Lappi, R. Venugopalan, arXiv: 1009.5295

(b) CMS MinBias, 1.0GeV/c<p_<3.0GeV/c

The path to eRHIC

Breaking the coherence in nuclear collisions

Coherence of gluon fields inside the nuclei tames hadron multiplicities

Pb+Pb @ sqrt(s) = 2.76 ATe

2010-11-08 11:30:46

Fill: 1482

Run: 137124 Event: 0x00000000D3BBE

The scaling in the centrality dependence of hadron multiplicity at RHIC and LHC

QCD at high energy density: gauge fields with boundary conditions (horizons)

M. Cheng et al, arXiv:0710.0354

Talk by Z. Fodor

Is T~200 MeV "hot" or "cold"? The answer depends on the strength of interactions and gauge field dynamics

QCD phase diagram and the critical point

Search for the critical point in beam energy scan

Talk by H. Masui (QM'11 + AUM'11)

Talk by M. Stephanov

How does the produced matter evolve? The remarkable success of hydrodynamics

y', y

W_{PP}

X'

X'

Y_{RP}

R. Snellings [ALICE Coll.] Talk at QM2011

Talk by J. Harris

Hydrodynamics: an effective low-energy Theory Of Everything (TOE)

• Hydrodynamics states that the response of the fluid to slowly varying perturbations is completely determined by conservation laws (energy, momentum, charge, ...)

Hydrodynamics

 $N_{\it pairs} \propto 1 + 2v_1^2 \cos \Delta \varphi + 2v_2^2 \cos 2\Delta \varphi + 2v_3^2 \cos 3\Delta \varphi + 2v_4^2 \cos 4\Delta \varphi + ...$

Q-Cumulants: 200 GeV Au+Au |η|<1.0

Higher harmonics: discriminate between various initial conditions, extract viscosities

V₂ described by Glauber and CGC

Talks by S. Bathe, R. Lacey [PHENIX] QM 2011

Lack of "chunkiness" in the CGC/KLN MC implementation? ongoing work

v₃ described only by Glauber

Talks by

U. Heinz

D. Teaney

A.Taranenko

Sonic horizon in the QCD fluid

P. Staig and E. Shuryak, arXiv:1105.0676

Fluctuation in the initial condition, so can be long-range in rapidity (causality) -

e.g. due to glasma field flux tubes; hydro -> MagnetoHydroDynamics?

Quantifying the transport properties of QCD matter

Hydrodynamics: an effective low-energy theory, expansion in the ratio of 1 thermal length 1/T to the typical variation scale L, $\epsilon \equiv \frac{1}{LT}$

• Each term in this derivative expansion is multiplied by an

appropriate transport coefficient

very small shear viscosity -"perfect liquid"; strong coupling

The metaphor of the cave, 2011 A.D.:

AdS/CFT correspondence

"The prisoners would take the shadows to be real things and the echoes to be real sounds, not just reflections of reality, since they are all they had ever seen or heard."

Low-energy effective ToE: hydrodynamics

Caveman's view:

Shear viscosity

Bulk viscosity

Deviation from conformal symmetry

Rate of topological transitions

Holographic view:

Particle contents of supergravity: gravitons, dilatons, axions

- = fields on the boundary AdS₅ "Reality":
- Graviton propagation

Dilaton propagation

Axion propagation

Relativistic hydrodynamics and quantum anomalies

- Hydrodynamics: an effective low-energy TOE. States that the response of the fluid to slowly varying perturbations is completely determined by conservation laws (energy, momentum, charge, ...)
- Conservation laws are a consequence of symmetries of the underlying theory
- What happens to hydrodynamics when these symmetries are broken by quantum effects (anomalies of QCD and QED)?

 25

Anomaly-induced currents: the chiral magnetic effect

cf Ohmic conductivity: $\vec{J} = \sigma \vec{E}$ T-odd, dissipative

26

arXiv:1105.0385

Chiral magnetic effect in lattice QCD with chiral chemical potential

Arata Yamamoto

Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan

(Dated: May 3, 2011)

We perform a first lattice QCD simulation including two-flavor dynamical fermion with chiral chemical potential. Because the chiral chemical potential gives rise to no sign problem, we can exactly analyze a chirally asymmetric QCD matter by the Monte Carlo simulation. By applying an external magnetic field to this system, we obtain a finite induced current along the magnetic field, which corresponds to the chiral magnetic effect. The obtained induced current is proportional to the magnetic field and to the chiral chemical potential, which is consistent with an analytical prediction.

Phase diagram in the (T, μ_5) plane? (no sign problem - ongoing)

Chiral MagnetoHydroDynamics (CMHD) - relativistic hydrodynamics with triangle anomalies and external electromagnetic fields

First order (in the derivative expansion) formulation:

D. Son and P. Surowka, arXiv:0906.5044

Constraining the new anomalous transport coefficients: positivity of the entropy production rate, $\partial_{\mu} s^{\mu} \geq 0$

$$\nu^{\mu} = -\sigma T P^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T}\right) + \sigma E^{\mu} + \xi \omega^{\mu} + \xi_B B^{\mu},$$

$$s^{\mu} = s u^{\mu} - \frac{\mu}{T} \nu^{\mu} + D \omega^{\mu} + D_B B^{\mu},$$

$$\xi = C\left(\mu^2 - \frac{2}{3}\frac{n\mu^3}{\epsilon + P}\right), \quad \xi_B = C\left(\mu - \frac{1}{2}\frac{n\mu^2}{\epsilon + P}\right).$$

CME (for chirally imbalanced matter)

28

Anomalous terms in hydrodynamics: dictated by 2nd law of thermodynamics!

Second Edition

L. D. LANDAU and E. M. LIFSHITZ

Institute of Physical Problems, U.S.S.R. Academy of Sciences

Volume 6 of Course of Theoretical Physics Second English Edition, Revised

Translated from the Russian by J. B. SYKES and W. H. REID

FLUID MECHANICS XV. RELATIVISTIC FLUID DYNAMICS

- 133. The energy-momentum tensor
- 134. The equations of relativistic fluid dynamics

137. Anomalies in relativistic fluids

should be added to the next editions of hydrodynamics textbooks ... motivated by RHIC, and should be studied!

Chiral MagnetoHydroDynamics (CMHD) - relativistic hydrodynamics with triangle anomalies and external electromagnetic fields

First order hydrodynamics has problems with causality and is numerically unstable, so second order formulation is necessary;

Complete second order formulation of CMHD: DK and H.-U. Yee, 1105.6360

Many new transport coefficients - use conformal/Weyl invariance; still 18 independent transport coefficients related to the anomaly. 15 that are specific to 2nd order; 13 are computed (**T-invariance!**)

$$\sigma^{\mu\nu}\mathcal{D}_{\nu}\bar{\mu} , \omega^{\mu\nu}\mathcal{D}_{\nu}\bar{\mu} , \Delta^{\mu\nu}\mathcal{D}^{\alpha}\sigma_{\nu\alpha} , \Delta^{\mu\nu}\mathcal{D}^{\alpha}\omega_{\nu\alpha} , \sigma^{\mu\nu}\omega_{\nu} ,
\sigma^{\mu\nu}E_{\nu} , \sigma^{\mu\nu}B_{\nu} , \omega^{\mu\nu}E_{\nu} , \omega^{\mu\nu}B_{\nu} , u^{\nu}\mathcal{D}_{\nu}E^{\mu} ,
\epsilon^{\mu\nu\alpha\beta}u_{\nu}E_{\alpha}\mathcal{D}_{\beta}\bar{\mu} , \epsilon^{\mu\nu\alpha\beta}u_{\nu}B_{\alpha}\mathcal{D}_{\beta}\bar{\mu} , \epsilon^{\mu\nu\alpha\beta}u_{\nu}E_{\alpha}B_{\beta} , \epsilon^{\mu\nu\alpha\beta}u_{\nu}\mathcal{D}_{\alpha}E_{\beta} , \epsilon^{\mu\nu\alpha\beta}u_{\nu}\mathcal{D}_{\alpha}B_{\beta} .$$
(2.60)

new

Many new anomaly-induced phenomena!

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

(STAR Collaboration)

NB: P-even quantity (strength of P-odd fluctuations); consistent with the measured balance functions

Talk by J. Dunlop (dynamical charge correlations) - e.g. D.Gangadharan[STAR] QM'11

B. Mohanty [STAR Coll] QM 2011

Dynamical Charge Correlations

Observations:

Measurement of charge correlations with respect to event plane

Difference between same sign and opposite sign charge correlations decreases as beam energy decreases. Same sign charge correlations become positive at 7.7 GeV.

QM2011 Bedanga Mohanty

Signal disappears; onset of deconfinement?

CME studies at the LHC

Talk by J. Harris

+ 2 particle correlations out-of-plane?

Centrality percentile

P. Cristakoglou et al [ALICE Coll] arXiv:1106.2826

Y.Burnier, DK, J. Liao, H.-U.Yee, arXiv:1103.1307 - PRL

Anomaly-induced quadrupole moment at finite baryon density

B.Mohanty [STAR] Quark Matter 2011

Chiral magnetic wave or a mundane effect (Coulomb, resonances)?

A new test: baryon asymmetry

DK, D.T.Son arXiv:1010.0038; PRL

$$\vec{J} = \frac{N_c \mu_5}{2\pi^2} [\text{tr}(VAQ)\vec{B} + \text{tr}(VAB)2\mu\vec{\omega}]$$

$$\text{CME}$$
Vorticity-induced "Chiral Vortical Effect"

There has to be a positive correlation between electric charge and baryon number! mixed correlators - e.g. Λ π^+

Control over magnetic field - use **U+U collisions** separate eccentricity and elliptic flow from the magnetic field effects

Talk by J. Dunlop

Response of QCD fluid to fast collimated perturbations (jets)

Jets at LHC:

suppressed, but shape unmodified?

Updated jet algorithm: Particle Flow, Anti- k_{T_1} R=0.3 Charged tracks, p_T^{Track} >4 GeV/c, jets with p_T^{Jet} =40-300 GeV/c

Jets in QCD matter: suppressed, but shape unmodified?

No change in shape between central and peripheral collisions

P.Steinberg [ATLAS Coll] QM 2011

$$t_f \sim \frac{\omega}{k_\perp^2} \sim \frac{1}{k_\perp} \frac{1}{\theta}$$

B. Wyslouch [CMS Coll] **QM 2011**

Theoretical approaches: talk by X.N.Wang

Out-off-cone low p_⊤ particles balance the complete event

Formation time of gluon radiation - do not expect modification at small angle, large z; but: surprise at small z, arge angles

Jet shape at RHIC

Measure jet-hadron correlations with the requirement of a fully reconstruct recoil jet:

Away-side shows broadening and softening in jet-hadron correlations

- ⇒ Highly biased jets (p_TCut>2 GeV) seem to be modified; jet-finding algorithm not only reconstructing unmodified jet!
- ⇒ Suppression of di-jet coincidence most likely due to "out-of-cone energy"

Slide from J. Putschke [STAR]

Jet shape at RHIC: γ -tagged jets

Quarkonium suppression at RHIC

the observed AA suppression cannot be explained by cold nuclear matter effects alone;

however these effects are non-linear and strongly depend on x, centrality, ...

gluon saturation - talk by M. Nardi

The plasma thermometer: quarkonium suppression

Bottomonium studies at RHIC have already begun; +upgrades

Suppression of excited Y states

 $\Upsilon(2S+3S)/\Upsilon(1S)\Big|_{pp} = 0.78^{+0.16}_{-0.14} \pm 0.02$

 $\Upsilon(2S+3S)/\Upsilon(1S)\Big|_{PbPb} = 0.24^{+0.13}_{-0.12} \pm 0.02$

43

Slide from B.Wyslouch [CMS Coll] QM 2011

$$\frac{\Upsilon(2S+3S)/\Upsilon(1S)|_{PbPb}}{\Upsilon(2S+3S)/\Upsilon(1S)|_{pp}} = 0.31_{-0.15}^{+0.19} \pm 0.03$$

Excited states Υ(2S,3S) relative to Υ(1S) are suppressed

Heavy quark transport and

energy loss

 J/ψ does not flow...

STAR
Talk by
Y.Zhang

does open charm ?(c, b decay) leptons:

PHENIX

arXiv:1005.1627

Talks by J. Dunlop, M. Leitch need vertex detector measurements at RHIC!

Understanding the dynamics of gauge fields with heavy ions

Physics	RHIC measurements
Weak/vacuum fields	Jets, parton fragmentation in pp
Strong static fields	Small x distributions in nuclei
Real-time dynamics	☐ EM probes, jets, heavy quarks
Gauge fields with boundary conditions/ event horizons	Bulk behavior, soft photons and dileptons
Low-energy effective Theory of Everything: hydrodynamics	Transport properties: flow harmonics, correlations
Topology of gauge fields; Chiral MagnetoHydroDynamics	Charge-dependent flow harmonics, charge-baryon number correlations, U+U

Summary

Heavy ion program at RHIC opens a window into the dynamics of gluon fields and QCD matter under extreme conditions

Complementarity with LHC program, and many unique possibilities (BES - finite baryon density, CP, spin,...)

The future: quantitative characterization of transport properties of QCD fluid, phase diagram, novel phenomena